

rapidsms-decisiontree-app

This application is a generic implementation of a decision tree, which is
completely database-configurable. Users are asked questions and respond via
SMS messages using the RapidSMS framework built on top of Django.

The original code for this application was written by Dimagi [http://www.dimagi.com/] and is currently packaged and maintained by Caktus
Consulting Group, LLC [http://www.caktusgroup.com/services].

Requirements

rapidsms-decisiontree-app is tested on RapidSMS 0.19, Django 1.7, and
Python 2.7. There is optional support for django-celery [https://github.com/celery/django-celery].

Features

	Support for sessions (i.e. 100 different users can all go through a session
at the same time)

	Branching logic for the series of questions

	Tree visualization

	Errors for unrecognized messages (e.g. ‘i don’t recognize that kind of
fruit’) and multiple retries before exiting the session

Installation

The latest stable release of rapidsms-decisiontree-app can be installed from
the Python Package Index (PyPi) with pip [http://www.pip-installer.org/]:

pip install rapidsms-decisiontree-app

Once installed you should include 'decisiontree' in your INSTALLED_APPS
setting.

INSTALLED_APPS = (
 ...
 'decisiontree',
 ...
)

You’ll need to create the necessary database tables:

python manage.py migrate decisiontree

At this point data can only be viewed/changed in the Django admin. If you want
to enable this on the front-end you can include the decisiontree.urls in
your root url patterns.

urlpatterns = [
 ...
 url(r'^surveys/', include('decisiontree.urls')),
 ...
]

See the full documentation [http://rapidsms-decisiontree-app.readthedocs.org/] for additional
configuration options.

Running the Tests

Test requirements are listed in requirements/tests.txt file in the project
source [https://github.com/caktus/rapidsms-decisiontree-app]. These
requirements are in addition to RapidSMS and its dependencies.

After you have installed 'decisiontree' in your project, you can
use the Django test runner to run tests against your installation:

python manage.py test decisiontree decisiontree.multitenancy

Minimal test settings are included in decisiontree.tests.settings; to use
these settings, include the flag --settings=decisiontree.tests.settings.

To easily run tests against different environments that rapidsms-decisiontree-app
supports, download the source and navigate to the rapidsms-decisiontree-app
directory. From there, you can use tox to run tests against a specific
environment:

tox -e python2.7-django1.7.X

Or omit the -e argument to run tests against all environments that
rapidsms-decisiontree-app supports.

To see the test coverage you can run:

coverage run python manage.py test decisiontree decisiontree.multitenacy
coverage report -m

A common .coveragerc file is include in the repo.

Contents:

	Decision Tree Overview
	Making a Tree

	Questions/Answers/TreeStates/Transitions

	Registering a custom answer handler

	Notifications

	Timeouts

	Simple Tree Example
	Creating Questions

	Creating Answers

	Associating Questions and Answers

	The Survey Tree

	Advanced Tree Example
	New Questions

	New Answers

	New States and Transitions

	Available Settings
	DECISIONTREE_NOTIFICATIONS

	DECISIONTREE_SESSION_END_TRIGGER

	DECISIONTREE_TIMEOUT

	Release History
	v0.1.0 (TBD)

Indices and tables

	Index

	Module Index

	Search Page

Decision Tree Overview

The tree app allows you to define decision trees that can perform a
question-and-answer type interaction with a user. A tree consists of one or
more states each of which is associated with a question and zero or more
answers to that question that can transition to other states. As questions are
answered the user traverses the tree based on the answers until he or she
reaches a state that has no more transitions. At this point the user has
completed the session. The tree saves every question/answer pairing in a
single table, and provides functionality for applications to initiate a
callback when trees are initiated and completed so that application developers
can write their own processing of the tree data. A visualization of a tree is
below.

[image: _images/demo_tree.png]

Making a Tree

Currently trees can only be made through the admin interface.

Trees have a trigger, which is is the incoming message that will initiate a
tree. They also have a root state which is the first state the tree will be
in. The question linked to the root state will be the one that is sent when
the tree is initiated. The remaining logic of the tree is encapsulated by the
Transition objects, which define how answers to questions move from one state
to the next (more on this below).

A tree also has optional completion text, which is the message that will be
sent to the user when they reach a node in the tree with no possible
transitions.

Questions/Answers/TreeStates/Transitions

The behavior of a tree is fully encapsulated a set of states and transitions
that define how one moves through the tree.

A Question is just some text to be sent to the user, and an optional error
message if the question is not answered properly.

A TreeState is a location in a tree. A TreeState is associated with a Question
(that will be asked when the user reaches that state in the Tree) and a set of
Answers (Transitions) that allow traversal to other TreeStates.

A Transition is a way to move from one TreeState to another. A Transition has
a beginning state, an Answer, and an optional ending state. If a transition has
no ending state, the answer will result in the completion of the tree.

An Answer is a way to answer a question, and defines how one moves across a
Transition

There are three possible types of answers:

1. The simplest is an exact answer. Messages will only match this answer if
the text is exactly the same as the answer specified.

2. The second is a regular expression. In this case the system will run a
regular expression over the message and match the answer if the regular
expression matches.

3. The final type is custom logic. In this case the answer should be a
special keyword that the application developer defines. The application
developer can then register a function tied to this keyword with the tree
app and the tree app will call that function to see if the answer should
match. The function should return any value that maps to True if the
answer is valid, otherwise any value that maps to False.

Registering a custom answer handler

The following code shows a function, and how to register that function with the
Tree app as a custom answer handler for the word “demo”.

inside myapp.App

def validate_password(self, msg):
 """
 This function validates a password. This exact functionality could
 have been provided with a normal answer type, but you can put
 whatever logic you want here as long as you return True/False
 for matching/non-matching answers.
 """
 return msg.text == "spomc"

def start(self):
 """Start is called by the router to bootstrap our app"""
 # get the app from the rapidsms router
 self.tree_app = self.router.get_app("tree")
 # register our validate password function with the "demo" keyword
 self.tree_app.register_custom_transition("demo", self.validate_password)

Notifications

For emailed notifications associated with tags to work, INSTALLED_APPS must
contain ‘rapidsms.contrib.scheduler’ and the setting DECISIONTREE_NOTIFICATIONS
must be True. The default is False.

Timeouts

decisiontree can notice when it’s been waiting for a response for too long and
send a reminder, repeating the question. This requires running celery and
celerybeat, and the additional configuration in settings.py.example.

On timeout, decisiontree will act as if it has received an invalid response.
This results in sending a reminder and repeating the question, or, if the
allowed retries are exhausted, giving up.

Simple Tree Example

Below is the setup for an example survey which asks three basic questions to a user.
There are no branches and all responses allow for free text. The questions are based
on the bridgekeeper scene from “Monty Python and the Holy Grail”.

Creating Questions

We will create the three questions via the admin interface with the following data:

Questions
pk: 1
text: What is your name?

pk: 2
text: What is your quest?

pk: 3
text: What is your favorite color?

Note

The pks are listed for future reference but these would be auto generated by
the database.

Creating Answers

Next we will create an allowable answer in the admin. These questions don’t require
exact matches so we will just accept any text:

Answers
pk: 1
name: Free Text
type: Regular Expression
answer: .*

Note

This regular expression will match anything. You may need to make this express less
allowing depending on your needs.

Associating Questions and Answers

Questions and answers are associated via tree states and transitions. Since we don’t
have any branches the tree states and questions will be tied in a one to one fashion:

Tree States
pk: 1
question: 1

pk: 2
question: 2

pk: 3
question: 3

Within a tree state you can also optionally specify the number of allowable retries but
these have been excluded for simplicity.

Transitions determine how users are moved through the tree based on their answers. Here
we will allow any text for each question and simply move the user on to the next question:

Transitions
pk: 1
current state: 1
answer: 1
next state: 2

pk: 2
current state: 2
answer: 1
next state: 3

pk: 3
current state: 3
answer: 1
next state: null

Transitions can also be tagged and notifications can be sent when those tags are triggered. For
instance you may create a new answer which is for the text ‘blue’ and have a new transition
which handles the case when the user had the favorite color blue. Again this has been excluded
for simplicity.

The Survey Tree

At this point the tree structure is in place to ask the series of questions but we
need a way to start the survey. Again in the admin we would create a Tree with a trigger
keyword which asks the user the first question:

Tree
pk: 1
trigger: #test
root state: 1
completion text: Go on. Off you go.

Now when an incoming SMS matches the trigger text #test we will respond with the question
from state one “What is your name?”. They will proceed on with each question and when
finished we will respond “Go on. Off you go.” This completion text is optional.

At this point we have a simple yet functioning linear survey tree. An example SMS workflow is given below:

555-555-1234 >>> #test
555-555-1234 <<< What is your name? # This is state 1, question 1
555-555-1234 >>> My name is Sir Lancelot of Camelot.
555-555-1234 <<< What is your quest? # This is state 2, question 2
555-555-1234 >>> To seek the Holy Grail.
555-555-1234 <<< What is your favorite color? # This is state 3, question 3
555-555-1234 >>> Blue.
555-555-1234 <<< Go on. Off you go. # End of questions

Continuing reading to see how we can add branches to this series of questions.

Advanced Tree Example

Here we will expand on the previous tree example to contain branches based on
varying answers. We will continue to work from the Monty Python questions.

New Questions

First will add new questions for the addition branches:

Questions
pk: 4
text: What is the capital of Assyria?

pk: 5
text: What is the air-speed velocity of an unladen swallow?

New Answers

In the same logic of the movie we will ask the questions based on the name of
the knight:

Answers
pk: 2
name: Sir Robin
type: Regular Expression
answer: .*Robin.*

pk: 3
name: King Arthur
type: Regular Expression
answer: .*Arthur.*

New States and Transitions

We need additional states to handle these trees. Since the final question is
the only thing different we still need multiple states which point to the same
second question:

Tree States
pk: 4
question: 4

pk: 5
question: 5

pk: 6
question: 2

pk: 7
question: 2

Now we need the transitions between the questions based on the first answer.
First we will do Sir Robin:

Transitions
pk: 3
current state: 1
answer: 2
next state: 6

pk: 4
current state: 6
answer: 1
next state: 4

pk: 5
current state: 4
answer: 1
next state: null

Then King Arthur:

Transitions
pk: 6
current state: 1
answer: 3
next state: 7

pk: 7
current state: 7
answer: 1
next state: 5

pk: 8
current state: 5
answer: 1
next state: null

The tree itself does not need to be modified. An example SMS workflow is given
below:

555-555-1234 >>> #test
555-555-1234 <<< What is your name? # This is state 1, question 1
555-555-1234 >>> Sir Robin
555-555-1234 <<< What is your quest? # This is state 6, question 2
555-555-1234 >>> To seek the Holy Grail.
555-555-1234 <<< What is the capital of Assyria? # This is state 4, question 4
555-555-1234 >>> I don't know that.
555-555-1234 <<< Go on. Off you go. # End of questions

So this isn’t perfect to movie but it should demonstrate the difference from
the simple example.

Available Settings

rapidsms-decisiontree-app has a few settings available for configuring the
behaviour.

DECISIONTREE_NOTIFICATIONS

Default: False

If enabled this will periodically send emails based on the response tags and
the TagNotification configurations. This requires the
rapidsms.contrib.scheduler app.

DECISIONTREE_SESSION_END_TRIGGER

Default: end

This configures a keyword which the users can use to end their question
session. This functionality can be disabled by making this setting None.

DECISIONTREE_TIMEOUT

Default: 300

This is the time in seconds to wait between questions before the user is asked
the question again or the question session is abandoned. Using this setting
requires the threadless-router [https://github.com/caktus/rapidsms-threadless-router] and django-celery [https://github.com/celery/django-celery]. You must enable this task in your
CELERYBEAT_SCHEDULE in your project settings

from celery.schedules import crontab

CELERYBEAT_SCHEDULE = {
 # Other periodic tasks included here
 "decisiontree-tick": {
 "task": "decisiontree.tasks.PeriodicTask",
 # How often to check sessions for timeout
 "schedule": crontab(), # every minute
 },
}

Release History

Below is the history of the rapidsms-decisiontree project. With each release
we note new features, large bug fixes and any backwards incompatible changes.

v0.1.0 (TBD)

The initial PyPi release.

Index

 _static/plus.png

nav.xhtml

 Table of Contents

 		rapidsms-decisiontree-app

 		Decision Tree Overview

 		Making a Tree

 		Questions/Answers/TreeStates/Transitions

 		Registering a custom answer handler

 		Notifications

 		Timeouts

 		Simple Tree Example

 		Creating Questions

 		Creating Answers

 		Associating Questions and Answers

 		The Survey Tree

 		Advanced Tree Example

 		New Questions

 		New Answers

 		New States and Transitions

 		Available Settings

 		DECISIONTREE_NOTIFICATIONS

 		DECISIONTREE_SESSION_END_TRIGGER

 		DECISIONTREE_TIMEOUT

 		Release History

 		v0.1.0 (TBD)

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/comment.png

_images/demo_tree.png
ves

—
Hello, do you like the
tree app? Please say

yes or no.

That's great! What
would you rats it on a
scale of 1-107

16

710

That's a bit low.
Flease respond with

any suggestions to
make it better,

No answers yet.

Thanks! we're glad

you're having fun.

No answers yet.

Why not? It is super
sweet, Please
respond with any
suggestions to make it
better.

No answers yet.

_static/minus.png

_static/up-pressed.png

